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aLaboratoire de Mécanique et d’Acoustique, CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille, France
bDepartment of Mechanical Engineering, Pontifı́cia Universidade Católica do Rio de Janeiro, rua Marquês de São Vicente, 225,
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Abstract

The Karhunen–Loève (KL) decomposition establishes that a 2D random field can be expanded as a series involving a

sequence of deterministic orthogonal functions with orthogonal random coefficients. The proper orthogonal

decomposition (POD) method consists in detecting spatially coherent modes in the dynamics of a spatio-temporally

varying system by diagonalizing the spatial correlation function given by an averaging operator. The KL expansion is

applied here to the responses of randomly excited vibrating systems with a view to performing a POD in separated-

variables (time and space) form.

Discrete and continuous mechanical systems are considered in this study as well as stationary and transient (non-

stationary) responses. An averaging operator involving time and ensemble averages is proposed to draw up the POD

in separated-variables form from the associated KL expansion. The result obtained using this approach agrees with

the classical POD in the case of deterministic or ergodic random signals. The associated proper orthogonal modes

are interpreted in case of linear and nonlinear vibrating systems subjected to white noise excitation in terms of normal

modes.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

In several domains of engineering science, it can be useful to have a second-moment characterization of a
random field in terms of uncorrelated random variables. An expansion of this kind can be found in the
literature where it is known as the Karhunen–Loève (KL) expansion. The basis functions in this expansion,
which are also called Karhunen–Loève modes (KLMs), are the eigenfunction solutions of the Fredholm
integral equation, the kernel of which is the autocorrelation (or autocovariance) function of the random
field under study. The main properties of the KL expansion are the orthogonality of the eigenfunctions
and the random variables taken as coefficients and the error-minimizing property. This expansion was
developed in the 1940s by several authors (Kosambi, 1943; Loève, 1945; Karhunen, 1947; Kac and Siegert,
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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1947; Obukhov, 1954; Pougachev, 1953). It was subsequently investigated and used in many branches of
engineering science. Depending on the properties of the random field under study, the use of the expansion,
and/or the field of application, this expansion has been given under different names such as principal
component analysis (PCA), proper orthogonal decomposition (POD), and singular value decomposition
(SVD) [1].

In the field of random mechanics the KL expansion has been intensively used. It is one of the main tools
used to develop the stochastic finite elements method [2]. It is also one of the techniques used to simulate
random fields when they are specified by its covariance function and its marginal density probability [3,4].
Some methods of characterizing stochastic dynamic responses have also been developed in which the KL
expansion is used to account for the excitation process [5–7]. In studies of this kind, the KL expansion is
obtained starting with an analytical form of the covariance function, and neither simulated nor experimental
data are required.

When the term POD is used to denote an expansion, it generally refers to a characterization of the signal
based on experimental data. As defined in Ref. [1], the POD is a multi-variate statistical method that aims at

obtaining a compact representation of the data. The POD also involves detecting spatially coherent modes
in the dynamics of a spatio-temporally varying system by diagonalizing the spatial covariance function of
data with respect to an averaging operation. In the case of random fields, the averaging operation is taken
to be the ensemble average and the POD expansion is called the KL expansion. In the case of spatio-temporal
data (not necessarily random ones), the averaging operation is focuses typically on the time average.
As illustrated in Refs. [8,9], this is not the only possibility and, when data correspond to a random-
response process, the stationarity in time and the ergodicity are required to relate the time average to the
ensemble average or mean operator. The POD has been generally used, combined with the Galerkin method,
for model reduction purposes. In vibration analysis the KLMs, or proper orthogonal modes (POMs),
advantageously replaces the linear normal modes (LNMs) of the underlying linear system (see for example
Refs. [10–13]).

The physical interpretation of POMs has also been investigated. These modes have been related to
the LNMs of multi-modal free responses of discrete symmetrical systems when the mass matrix has the
form mI and for lightly damped systems [14,15]. In these cases, time averaging has been used as the averag-
ing operation in the POD method. In Refs. [15,20], it was also established that the POMs are the princi-
pal axes of the potential bounding ellipsoid. This result has been extended to distributed parameter systems
[16,17] and used to extract mode shapes by applying the POD on the measured response data [18].
Conservative linear systems (discrete and continuous) under random excitation have been studied in
Ref. [19]. It was established that POMs converge to the LNMs if the mass distribution is known and
if each mode is excited with a random process with a convergent Fourier transform. Here again the time
average was used as the averaging operation in the POD method. One of the consequences of this
choice is that the eigenvalues associated with the POMs can depend on the temporal trajectories.
Linear discrete mechanical systems subjected to Gaussian white-noise excitation have been addressed in
Ref. [15]. In this case ensemble averaging has been used as the averaging operation in the POD method
(KL expansion method). It was shown in the latter study that the KLM of the stationary responses
can be obtained by solving the algebraic Lyapunov equation and that these responses are related to the
principal axis of the ellipsoids defined by the contours of the joint probability density of the displacement
response.

Here we show how the KL expansion can be used to obtain a POD of randomly excited vibrating systems in
terms of separate variables (time and space) and separate characteristics (random and deterministic). Discrete
and continuous mechanical systems are studied in this context as well as transient (non-stationary) and
stationary responses. An averaging operator involving time and ensemble averaging is presented for obtaining
the POD in separate form from the associated KL expansion. This approach corresponds to the classical POD
used in the case of deterministic or ergodic random signals. As in the classical POM approach, there are two
ways of constructing the expansion from data: the direct and the snapshot methods. Each method has its own
field of application, as will be discussed below, although this paper uses only the direct method. The associated
POMs are interpreted, in the case of both linear and nonlinear vibrating systems subjected to white-noise
excitation, in terms of normal modes.
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2. KL expansion

The mathematical formulation used here to present the KL expansion was based on those used in
Refs. [21–23]. It involves concepts of a rather abstract and mathematical kind which are not conventionally
used in the field of engineering science.

Let D be a compact subset of Rl and fXðzÞgz2D a stochastic vector field defined on a probability space
ðO;F;PÞ with values in Rd . This random field is an l-parameter family on real-valued vector, Xðz; yÞ, for
ðz; yÞ 2 D� O where D denotes the space of physical variables and O the space of random events.

Let L2ðO;RdÞ be the Hilbert space of the second-order random vector variables defined on the probability
space ðO;F;PÞ with the inner product

hY;ZiO ¼

Z
O
hYðyÞ;ZðyÞidPðyÞ ¼ EðhY;ZiÞ, (1)

where h:; :i denotes the Euclidian inner product in Rd , dPðyÞ is the probability measure, and Eð:Þ denotes the
mean, or ensemble average, with respect to the probability measure P.

Let L2ðD;RdÞ be the Hilbert space of the square integrable vector functions defined on D with the inner
product

hf; giD ¼

Z
D

hfðzÞ; gðzÞidz. (2)

We will assume that the random field fXðzÞgz2D satisfies the following assumptions:
I:
 fXðzÞgz2D is a second-order random field, i.e., 8z 2 D,

EðhXðzÞ;XðzÞiÞo1; or ðXðzÞ 2 L2ðO;RdÞÞ,
II:
 fXðzÞgz2D is continuous in quadratic mean.
The random field can be regarded as a curve in either L2ðO;Rd Þ or L2ðD;RdÞ.
Under the previous assumptions, it can be shown that the covariance (or autocovariance) matrix function of

the random field fXðzÞgz2D,

CXðz1; z2Þ ¼ EððXðz1Þ �mXðz1ÞÞðXðz2Þ �mXðz2ÞÞ
T
Þ, (3)

(where mXðzÞ ¼ EðXðzÞÞ denotes the vector mean-function of the random field) defines a continuous self-
adjoint Hilbert–Schmidt operator, Q, on L2ðD;RdÞ by

ðQwÞðzÞ ¼

Z
D

CXðz; z
0Þwðz0Þdz0 for w 2 L2ðD;RdÞ.

The associated eigenvalue problem, Qw ¼ lw, has a countable number of eigenvalues l1Xl2X � � �XlkX � � �,
and the associated normalized eigenfunctions constitute an orthonormal basis, fwkgkX1, of L2ðD;RdÞ (i.e.,
hwk1

;wk2
iD ¼ dk1;k2

).
The eigenfunctions fwkgkX1 can be used as a basis for decomposing the random field fXðzÞgz2D such as

Xðz; yÞ �mXðzÞ ¼
X1
k¼1

xkðyÞwkðzÞ (4)

(the equality is in L2ðO;Rd Þ) where x1; x2; . . . ; xk; . . . are scalar zero-mean uncorrelated random variables, i.e.,

EðxkÞ ¼ 0 and Eðxk1
xk2
Þ ¼ lk1

dk1;k2
(5)

given by

xkðyÞ ¼
Z
D

hXðz; yÞ �mXðzÞ;wkðzÞidzð¼ hXðyÞ �mX;wkiDÞ. (6)
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The eigenvalues, lk, are related to the ‘‘energy’’ of the random field by means of the following relation:

EðkX�mXk
2
DÞ ¼

X1
k¼1

lk. (7)

For every positive integer p, and for any arbitrary orthogonal basis, ð ~wkÞ, of L2ðD;RdÞ where
~x1; ~x2; . . . ; ~xk; . . . are scalar random variables given by

~xkðyÞ ¼
Z
D

hXðz; yÞ �mXðzÞ; ~wkðzÞidz,

the following relation holds

E X�mX �
Xp

k¼1

xkwk

�����
�����
2

D

0
@

1
A ¼Xp

k¼1

lkpE X�mX �
Xp

k¼1

~xk
~wk

�����
�����
2

D

0
@

1
A. (8)

Expansion (4) is the KL expansion, or decomposition, of the random field fXðzÞgz2D. The set fwkgkX1 of
deterministic functions will be referred to here as the KL basis. The kth eigenvalue gives the average energy in
the direction of kth KL basis vector and the KL basis is the optimum basis for expressing the random field,
i.e., no other basis contains more energy in fewer elements.

3. POD using the KL expansion

We now examine how to use the KL expansion to extract models which capture the behaviour of a random
vibrating system. Before starting, it is important to note that in random vibrations, the physical domain D, in
which the random field based on the displacement field fuðzÞgz2D is defined, depends on the characteristics of
the structure. In the case of discrete mechanical systems, D ¼ DT � R (l ¼ 1) and DT usually defines the time
interval of interest and, without any loss of generality, we will assume in what follows that DT ¼ ½0;T � with
T 2 Rþ. In the case of continuous mechanical systems the space domain is D ¼ DT �Dx, where
Dx � Rp(with p ¼ 1; 2, or 3, i.e., l ¼ 2; 3, or 4).

In dynamics problems we usually want to develop the displacement field into a series in the separated-
variables form

uðt;x; yÞ ¼
X1
k¼1

akðt; yÞ/kðxÞ, (9)

where /k are deterministic Rd-valued functions and fakðtÞgt2DT
are scalar random processes. If the functions

/k and/or the random processes fakðtÞgt2DT
satisfy some orthogonal and optimality properties, expansion (9)

will be called the POD and /k and lk will be called POMs and proper orthogonal values (POVs), respectively.
The orthogonality properties can serve, for example, to construct reduced-order models and to extract
‘‘modal’’ properties.

It is important to realize that Eq. (9) is not the standard KL expansion given in Eq. (4). In Eq. (4), z ¼ ðt;xÞ
and in Eq. (9), t and x are treated differently. In Eq. (9), we take into account the fact that we are dealing with
a dynamic system. To obtain a POD in the form of Eq. (9), where the variables t and x play different roles, we
have to treat them differently.

3.1. Time-stationary case

If fuðt;xÞgðt;xÞ2DT�Dx
is time-stationary, its covariance matrix function satisfies the property Cuðt1; x1; t2;x2Þ

¼ Cuðt1 � t2;x1;x2Þ and the (spatial) covariance matrix function CXðt;x1; t;x2Þ ¼ Cuð0; x1; x2Þ does not depend
on time t.

For fixed t 2 DT , the KL theory described in Section 2 can be applied to the random field fuðt;xÞgx2Dx
,

yielding the following expansion (in L2ðO;RdÞ):

uðt;x; yÞ �muðxÞ ¼
X1
k¼1

xkðt; yÞwkðxÞ, (10)
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where wk are the eigenfunctions of the Hilbert–Schmidt operator (on L2ðDx;R
dÞ)

ððQwkÞðxÞ ¼Þ

Z
Dx

Cuð0; x;x
0Þwkðx

0Þdx0 ¼ lkwkðxÞ (11)

and the zero-mean uncorrelated random coefficients xkðtÞ (i.e. Eðxk1
ðtÞxk2

ðtÞÞ ¼ lk1
dk1;k2

) are given by

xkðt; yÞ ¼
Z
Dx

huðt;x; yÞ �muðxÞ;wkðxÞidxð¼ huðt; yÞ �mu;wkiDx
Þ. (12)

Due to the stationarity property, the mean function of the random field, the eigenfunctions, wk, and the
eigenvalues, lk, do not depend on time. Expansion (10) defines a POD of the time-stationary random field
fuðt; xÞgðt;xÞ2DT�Dx

in the form of Eq. (9) and the optimality relation (8) reduces to

E uðtÞ �mu �
Xp

k¼1

xkðtÞwk

�����
�����
2

Dx

0
@

1
A ¼Xp

k¼1

lkpE uðtÞ �mu �
Xp

k¼1

~xkðtÞ ~wk

�����
�����
2

Dx

0
@

1
A. (13)

3.2. Non-stationary case

When fuðt;xÞgðt;xÞ2DT�Dx
is not time stationary, the time variable has to be included (in the same way as the

random parameter y) in the averaging operation.
We consider the Hilbert space L2ðDT � O;RdÞ with the inner product

hY;ZiDT�O ¼
1

T

Z T

0

EðhYðtÞ;ZðtÞiÞdt ¼ EðhY;ZiÞ.

The random process fuðt;xÞgðt;xÞ2DT�Dx
can now be regarded as a curve in either L2ðDT � O;RdÞ or L2ðDx;R

dÞ

and it will be denoted in what follows by ffuðxÞggx2Dx
to point out that variables t and y are both included in

the averaging operation.
With this new averaging operation, the mean and (spatial) autocovariance matrix functions of the random

field ffuðxÞggx2Dx
are defined by

muðxÞ ¼ EðuðxÞÞ;

Cuðx; x0Þ ¼ EððuðxÞ �muðxÞÞðuðx
0Þ �muðx

0ÞÞ
T
Þ:

(

Provided assumptions I and II (Section 2) hold with the new averaging operation, the random field
ffuðxÞggx2Dx

can be expanded into (the equality is in L2ðDT � O;RdÞ)

uðt; x; yÞ �muðxÞ ¼
X1
k¼1

xkðt; yÞwkðxÞ, (14)

where the wk solve the eigenvalue problemZ
Dx

Cuðx;x
0Þwkðx

0Þdx0 ¼ lkwkðxÞ (15)

and x1; x2; . . . ; xm; . . . are scalar zero-mean random processes given by

xkðt; yÞ ¼
Z
Dx

huðt;x; yÞ �muðxÞ;wkðxÞidx (16)

which satisfy the orthogonality properties Eðxk1
xk2
Þ ¼ lk1

dk1;k2
.

Expansion (14) defines the POD of a (non-stationary) random field ffuðxÞggx2Dx
(or, equivalently, of

fuðt; xÞgðt;xÞ2DT�Dx
) and the optimality relation (8) reads as follows

E u�mu �
Xp

k¼1

xkwk

�����
�����
2

Dx

0
@

1
A ¼Xp

k¼1

lkpE u�mu �
Xp

k¼1

~xk
~wk

�����
�����
2

Dx

0
@

1
A. (17)
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3.3. Some comments
1.
 When working with the POD of a random field using the KL theory it is necessary to define clearly the
averaging procedure.
2.
 The existence of the POD based on KL expansion, as described in Eqs. (14)–(16), does not require any
assumptions about stationarity or ergodicity properties.
3.
 The POD based on KL expansion described in Eqs. (14)–(16) usually depends on the time parameter T. The
role of T has to be carefully examined when the random field is not stationary.
4.
 If the random field fuðt;xÞgðt;xÞ2DT�Dx
is time stationary, expansion (14) coincides with expansion (10).

Moreover, the expansion does not depend on the time parameter T and the energy relations (13) and (17)
are equivalent.

3.4. Discrete mechanical systems

In the discrete mechanical case, i.e., when the physical space is of the form D ¼ DT , expansions (10) and
(14) reduce to

uðt; yÞ �md
u ¼

Xn

k¼1

xkðt; yÞwk, (18)

where the wk are now constant vectors which solve the eigenvalue problem

Cd
uwk ¼ lkwk (19)

with

md
u ¼ EðuðtÞÞ

Cd
u ¼ EððuðtÞ �md

uÞðuðtÞ �md
uÞ

T
Þ

(
if fuðtÞgt2DT

is stationary (20)

and

md
u ¼ EðuðtÞÞ

Cd
u ¼ EðuðtÞ �md

u ÞðuðtÞ �md
u Þ

T
Þ

(
if not. (21)

In both cases, the set ðwkÞ1pkpn constitutes an orthonormal basis of the Hilbert space Rd .

4. Practical construction of POMs using a KL expansion

The construction of the POMs using the KL expansion requires, first, knowing the spatial covariance matrix
function of the random displacement field under study with respect to the chosen averaging operator and,
second, solving one of the eigenvalue problems (10), (14), or (19) associated to the chosen averaging operator.
With linear random vibrations, when only the excitation is random, it is possible to characterize the
covariance matrix function and thus to deduce some properties of the POMs; the computations can then be
carried out and this will be illustrated in the next section. In the other cases the modeling of the POMs is
carried out using experimental or numerical data (time-series and/or space-series data) solving the discretized
eigenvalue problem.

We will assume in what follows that the displacements are measured at N spatial points, x1;x2; . . . ;
xn; . . . ;xN , sampled in time M times, tm ¼ mt with m ¼ 1; . . . ;M, where t is the sampling period which must
be greater than the correlation time, and for R independent realizations (or outcomes or independent random
events) yr for r ¼ 1; . . . ;R. With these discretization parameters, we introduce the following notations:
�
 uðtm;xn; yrÞ denotes the observed or simulated value at x ¼ xn and t ¼ tm for the random event (or the
realization) y ¼ yr,

�
 UNðtm; yrÞ ¼ ðuðtm;x1; yrÞ

T; . . . ; uðtm;xN ; yrÞ
T
Þ,
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�
 uðmÞð:; yrÞ is referred to as the snapshot at t ¼ tm for the random event (or the realization) y ¼ yr and
uðmÞðx; yrÞ ¼ uðtm; x; yrÞ denotes the snapshot value at the spatial point x.

4.1. Time-ergodic case

We assume here that the statistical properties of the random displacement field can be inferred from one
single random event in the field (i.e., R is fixed at R ¼ 1) and that the ensemble average can be obtained from
the time averaging or, at least, that the mean and covariance functions satisfy the following relations

Eðuðt; xÞÞ ¼ lim
T!1

1

T

Z T

0

uðt;x; y1Þdt (22)

Eðuðt;xÞuðtþ t; x0ÞTÞ ¼ lim
T!1

1

T

Z T

0

uðt; x; y1Þuðtþ t; x0; y1Þ
T dt. (23)

The random field is time stationary and the approach presented in Section 3.1 can be used. In this case there
are two practical methods available for determining the POMs: the direct and the snapshot method. Next they
will be briefly presented and discussed.

4.1.1. Direct method

The random continuous field fuðt;xÞgðt;;xÞ2DT�Dx
is approximated by the random discrete field fUN ðtÞgt2DT

and the KL theory described in Section 3.4 (Eqs. (19), (20)) can be used.
Introducing the centred displacement VNðtmÞ ¼ UNðtm; y1Þ � ð1=MÞ

PM
k¼1UN ðtk; y1Þ (for convenience, the

argument y1 has been dropped) and drawing up the following M � dN ensemble matrix (where d is the
dimension of the displacement flow):

V ¼

VNðt1Þ

VNðt2Þ

..

.

VN ðtM Þ

2
666664

3
777775, (24)

the spatial correlation matrix with the dimension dN � dN can be written (using an ergodicity assumption) as
follows

R ¼
1

M
VTV. (25)

The POMs are then approximated at the N spatial points, xn, by the eigenvectors of R (which are orthogonal
due to its symmetry) and the eigenvalues will provide the POVs. The matrix dimensions obviously depend on
the number of sampling points, N.

4.1.2. Snapshot method

This method was first introduced in Ref. [24]. It was based on the fact that, due to the assumed ergodicity,
the spatial covariance matrix function can be expressed as

Cuð0; x;x
0Þ ¼ lim

M!1

1

M

XM
m¼1

vðmÞðxÞvðmÞðx0ÞT, (26)

where vðmÞðxÞ ¼ uðmÞðx; y1Þ � ð1=MÞ
PM

k¼1 u
ðmÞðx; y1Þ (for convenience, the argument y1 has been dropped).

However, in practice, one would have to deal with a finite number of snapshots. This would affect the kernel
Cuð0;x;x0Þ in Eq. (26), which could therefore have eigenfunctions which are linear combination of the
snapshots [23,24]:

wkðxÞ ¼
XM
m¼1

Akmv
ðmÞðxÞ, (27)
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where the coefficients Akm are still to be determined. Introducing Eqs. (26) and (27) into Eq. (15), these
coefficients would provide solutions to the eigenvalue problem defined by

DAk ¼ lkAk with Dmn ¼
1

M
hvðmÞ; vðnÞiDx

. (28)

To determine the POMs it is necessary, first, to compute the coefficients Dmn and, secondly, to perform the
spectral decomposition of a matrix the dimensions of which depend on the number of snapshots M. The
number of sampling points, N, enters the calculation only when the inner products are evaluated in Eq. (28).

It can thus be clearly seen that the direct method should generally be applied either to experimental data
involving a rich time history obtained at a relatively small number of locations or to numerically generated
data with moderate spatial resolution. Otherwise, in the case of multidimensional simulated flows with high
spatial resolutions, the snapshot method is preferable.
4.2. Non-ergodic case

When the random displacement field is not ergodic we need to perform more than one realization to
estimate the covariance matrix function. An estimator of the covariance matrix function can be obtained by
averaging the data from several (independent) realizations. The direct and snapshot methods can be extended
to this context using the averaging operator introduced in Section 3.2.
4.2.1. Direct method

As previously, the random continuous field fuðt;xÞgðt;xÞ2DT�Dx
is approximated by the random discrete field

fUNðtÞgt2DT
and the KL theory as described in Section 3.4 (Eqs. (19), (21)) can be used.

Introducing the centred displacement VNðtm; yrÞ ¼ UNðtm; yrÞ � ð1=RÞ
PR

s¼1 UN ðtm; ysÞ and setting up the
following ðMRÞ � dN ensemble matrix gives:

V ¼

VN;M ðy1Þ

VN;M ðy2Þ

..

.

VN ;MðyRÞ

2
666664

3
777775 with VN ;MðyrÞ ¼

vN ðt1; yrÞ

vN ðt2; yrÞ

..

.

vNðtM ; yrÞ

2
666664

3
777775, (29)

and the spatial covariance matrix having the dimensions dN � dN can be written

R ¼
1

MR
VTV. (30)

The POMs are then approximated at the N spatial points, xn, by the eigenvectors of R (which are orthogonal
due to the symmetry of R) and the eigenvalues will provide the POVs. Eqs. (29) and (30) are an extension
of Eqs. (24) and (25) taking the R realizations into account. The dimensions of the resulting matrix R do
not depend on the number of realizations R. They are the same as those of the associated matrix in the
ergodic case.
4.2.2. Snapshot method

This method is based on the fact that the covariance matrix function of ffuðxÞggx2Dx
can be expressed as

follows

Cuðx; x
0Þ ¼ lim

M;R!1

1

MR

XM
m¼1

XR

r¼1

vðm;rÞðxÞvðm;rÞðx0ÞT, (31)

where vðm;rÞðxÞ ¼ uðmÞðx; yrÞ � ð1=RÞ
PR

k¼1 u
ðmÞðx; ykÞ. However, in practice, one needs to deal with a finite

number of snapshots. This could affect the kernel Cuðx;x0Þ in Eq. (31) and the eigenfunctions would therefore
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be linear combinations of the snapshots:

wkðxÞ ¼
XM
m¼1

XR

r¼1

Akmrv
ðm;rÞðx; yrÞ, (32)

where the coefficients Akmr are still to be determined. Introducing Eqs. (31) and (32) in to Eq. (15) these
coefficients would provide solutions to the eigenvalue problem defined by

DAk ¼ lkAk with Dm1r1m2r2 ¼
1

MR
hvðm1;r1Þ; vðm2;r2ÞiDx

. (33)

Eqs. (32) and (33) are an extension of Eqs. (27) and (28)) taking the R realizations into account.
The dimensions of matrix D are now equal to MR. This value is generally greater than the dimensions
of the associated matrix in the direct method. This approach therefore seems to be less attractive than the
direct method.

5. Relation between POMs using KL expansion and LNMs

5.1. Discrete linear case

Consider a discrete mechanical system with d degrees of freedom. Let UðtÞ be the displacement vector. We
assume that UðtÞ satisfies the initial-value problem

M €UðtÞ þ C _UðtÞ þ KUðtÞ ¼ FðtÞ; t 2 DT , (34)

Uð0Þ ¼ U0; _Uð0Þ ¼ _U0, (35)

where M, C and K are symmetric square matrices with dimensions d � d, the vectors U0 and _U0 define the
initial conditions of the motion, and fFðtÞgt2DT

is a random vector process.
The LNM are classically defined from the free responses of the associated undamped system as

KU ¼MUX2,

where U ¼ ½U1 � � �Ui � � �Un� denotes the modal matrix with the normalization condition UTMU ¼ I which
implies that UTKU ¼ X2

¼ diagðo2
i Þ; o

2
i and Ui denote the squared resonance frequencies and the associated

normal-mode vectors.
If the damping is not proportional, the modes are complex and this topic will be addressed in a future study.

Here we focus on Eqs. (34) and (35) with proportional damping. Note that in this case the matrix UTCU is
also diagonal. In this section the aim is to establish when the POMs defined in Section 3 (which were based on
forced responses) can be used to determine the LNM. This part of the study which is in line with the results
previously presented in Refs. [15,19,25] will be restricted to the case where the excitation is a white-noise
random process with zero mean, and the method used to characterize covariance matrix function, recalled in
Appendix A, will be used.

5.1.1. Case I: M ¼ mI

We assume here that M ¼ mI, m40. Using the normal mode vectors as the basis of modeling, the modal-
displacement vector QðtÞ defined by

UðtÞ ¼ UQðtÞ ¼
Xd

i¼1

UiQiðtÞ (36)

satisfy the following second-order differential equation

€QðtÞ þH _QðtÞ þX2QðtÞ ¼ UTFðtÞ, (37)

where H ¼ UTCU ¼ diagð2tioiÞ is diagonal.



ARTICLE IN PRESS
S. Bellizzi, R. Sampaio / Journal of Sound and Vibration 297 (2006) 774–793 783
The evolution of the covariance matrix, CQðtÞ ¼ EðQðtÞQT
ðtÞÞ, of QðtÞ ¼ ðQTðtÞ; _Q

T
ðtÞÞT is given by

(see Appendix A)

_CQðtÞ ¼ AQCQðtÞ þ CQðtÞA
T
Q þDQ, (38)

CQð0Þ ¼ CQ0
, (39)

where

AQ ¼
0 I

�H �X2

� �
; DQ ¼

0 0

0 UTSFU

 !
,

CQ0
is easily deduced from CU0

, and the covariance matrix, ĈQ, of the stationary response is given by

0 ¼ AQĈQ þ ĈQA
T
Q þDQ. (40)

If the matrix UTSFU is diagonal (i.e., when the modal-excitation terms UT
i FðtÞ in Eq. (37) are uncorrelated),

it is easy to establish from Eq. (40) that the stationary covariance matrix ĈQ and the stationary covariance
matrix ĈQ of the modal displacement are diagonal. Now, recalling the change of variables (36), we obtain the
following relation:

ĈU ¼ UĈQUT (41)

from which we can deduce (recalling UTU ¼ m�1I) that the results of the POD performed using the KL
expansion of the stationary response UðtÞ (see Section 3.4, Eqs. (19) and (20)) agree with those of the modal
expansion (36).

If the matrices UTSFU and CQ0
are diagonal, the same property holds for the POD obtained using the KL

expansion of the transient response over ½0;T � with arbitrary T (see Section 3.4, Eqs. (19) and (21)). From
Eq. (38), it can be seen that the covariance matrix function, CQðtÞ, is a 2� 2 block matrix with diagonal blocks
of the same size. For all t 2 DT , the matrix CQðtÞ is diagonal, and integrating the relation CUðtÞ ¼ UTCQðtÞU
over ½0;T � gives

1

T

Z T

0

CUðtÞdt ¼ U
1

T

Z T

0

CQðtÞdt UT (42)

from which the above result is deduced.
As the modes of a damped linear system coincide with the LNM if the modal matrix diagonalizes the

damping matrix, the POMs coincide with the LNM if the modal matrix diagonalizes the covariance matrix of
the excitation.

5.1.2. Case II: unspecified mass matrix

Introducing the square root, M1=2, of the matrix M (i.e. M ¼M1=2M1=2) and using the change of variable

V ¼M1=2U (43)

the equation of motion (34) reads

€VðtÞ þ ~C _VðtÞ þ ~KVðtÞ ¼M�1=2FðtÞ, (44)

where the new damping and stiffness matrices, ~C ¼M�1=2CM�1=2 and ~K ¼M�1=2KM�1=2, are still symmetric
matrices. The previous results can now be applied to the new variable V.

Let Wi (for i ¼ 1; . . . ; d) be the linear normal mode vectors (with the normalization condition WTW ¼ I,
where W denotes the modal matrix, i.e., W ¼ ½W1 � � �Wi � � �Wd �) of system (44).

Following the result established in Section 5.1.1, if the matrix WTM�1=2SFM
�1=2TW is diagonal, then the

POMs obtained using the KL expansion of the stationary response V ðtÞ are in agreement with the LNM, Wi.
Knowing the mass matrix, M, it is possible to extract the LNM of the original system (34) from W using
the relation

U ¼M�1=2W. (45)
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Hence, when MamI, the POMs obtained using the KL expansion of the stationary response UðtÞ do not
coincide with the modal expansion and the LNMs can only be obtained from the variable V. Note that the
condition can be written as follows using the LNM

WTM�1=2SFM
�1=2TW ¼ UTCFU. (46)

A similar result can be obtained for the transient response but this point will not be addressed here.
5.1.3. Influence of the correlation coefficient between modal excitation terms

As we have seen above the KL expansion can be used to obtain the LNM if the modal excitation terms
UT

i FðtÞ are uncorrelated. In this section we will discuss the influence of the correlation coefficient between
modal excitation terms.

Let us take a 2-degree-of-freedom (dof) linear system (34) and (35) with proportional damping and identity
mass matrix. We assume that the matrix UTSFU is not diagonal. Let

UTSFU ¼
s11 r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s11s22
p

r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s11s22
p

s11

 !
, (47)

where s11 and s22 denote the modal input level and r the associated correlation coefficient. Solving Eq. (40),
the stationary covariance matrix ĈQ has components

ĈQ11
¼

s11
4t1o3

1

; ĈQ22
¼

s22
4t2o3

2

; ĈQ12
¼ rQ12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĈQ11

ĈQ22

q
(48)

with

rQ12
¼ r

8t21ro
ffiffiffiffiffiffiffiffiffi
rtro
p

ð1þ rtroÞ

ð1� r2oÞ
2
þ 4t21ð1þ rtroÞðrt þ roÞro

; rt ¼
t2
t1
; ro ¼

o2

o1
, (49)

where oi and ti denote the resonance frequencies and the associated damping ratios (see Eq. (37)) of the two
modal components under consideration. Introducing the ratio rs ¼ s22=s11, the stationary covariance matrix
takes the form

ĈQ ¼
s11

4t1o3
1

1 rQ12

ffiffiffiffiffiffiffiffiffi
rs

rtr3o

r

rQ12

ffiffiffiffiffiffiffiffiffi
rs

rtr3o

r
rs

rtr3o

0
BBB@

1
CCCA (50)

showing that its eigenvectors depend only on the modal damping ðt1; t2Þ, modal frequency ratio ro, modal
input level ratio rs, and the correlation coefficient r. Note that the eigenvectors do not depend on the absolute
values of the modal frequencies.

Figs. 1 and 2 show the Euclidian norm of the error vector between the canonical vector e1 ¼ ð1; 0Þ
T and the

normalized eigenvector of ĈQ, plotted versus the correlation coefficient r for t ¼ t1 ¼ t2 ¼ 0:01 and
t ¼ t1 ¼ t2 ¼ 0:1, respectively. The difference between the KLM and the LNM increases with r and decreases
as the modal frequency ratio increases. The dotted lines show the error vector between the canonical vector
e1 ¼ ð1; 0Þ

T and the normalized eigenvector of ð1=TÞ
R T

0 CQðtÞdt where the matrix function CQðtÞ has been
obtained solving Eq. (38) over ½0;T � numerically, with T ¼ 200 and T ¼ 100, and with t ¼ 0:1 and t ¼ 0:01,
respectively. The influence of T will be discussed in the following section.
5.1.4. Influence of T

The KL expansion of a non-stationary process has to be built using the averaging operator Eð:Þ and, in this
case, the result depends on the time duration T of the observation. For mechanical systems as defined by Eqs.
(34) and (35) when T tends to1, the KL expansion coincides with the KL expansion given by the stationary
response (see Appendix A).
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Fig. 1. Euclidian norm of the error vector between the canonical vector e1 ¼ ð1; 0Þ
T and the normalized eigenvector of ĈX versus the

correlation coefficient r with t ¼ 0:1.
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Fig. 2. Euclidian norm of the error vector between the canonical vector e1 ¼ ð1; 0Þ
T and the normalized eigenvector of ĈX versus the

correlation coefficient r with t ¼ 0:01.
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Considering the same example as in Section 5.1.3, we discuss the influence of T on the KL expansion. The
time constant of the mechanical system is used as a time unit. Using the same notations as in Section 5.1.3, the
time constant is defined by Tc ¼ maxð1=t1o1; 1=t2o2Þ.

Figs. 3 and 4 show the Euclidian norm of the error vector between the canonical vector e1 ¼ ð1; 0Þ
T and the

normalized eigenvector of the covariance matrix

ĈQðTÞ ¼
1

T

Z T

0

CQðtÞdt,
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Fig. 3. Euclidian norm of the error vector between the canonical vector e1 ¼ ð1; 0Þ
T and the normalized eigenvector of CQðTÞ versus the
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plotted versus the correlation coefficient r for t ¼ t1 ¼ t2 ¼ 0:01 and t ¼ t1 ¼ t2 ¼ 0:1, respectively. As
expected, for T large (TX10Tc, the KL expansion given by ĈQðTÞ is close to the stationary case (continuous
line)).

5.2. Continuous linear case

Here we deal with the case of a beam. Let jiðxÞ be the modal functions (where
R L

0
jiðxÞjjðxÞdx ¼ dij

and L denotes the length of the beam). The displacements of the beam can be expanded into a
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truncated series

uðt; xÞ ¼
Xp

i¼1

jiðxÞQiðtÞ, (51)

where the modal components can be modelled as follows:

€QðtÞ þH _QðtÞ þX2QðtÞ ¼ GðtÞ, (52)

where X2
¼ diagðo2

i Þ and H ¼ diagð2tioiÞ. The oi denote the modal frequencies and ti the associated
modal damping. The components of the modal excitation vector GðtÞ can be related to the physical excitation
F ðt;xÞ by

GiðtÞ ¼

Z L

0

jiðxÞF ðt;xÞdx.

In our case, F ðt;xÞ is a random process and we will assume that GðtÞ is a white-noise random process.
Using the same arguments as in Section 5.1.1, it is possible to show that if the covariance matrix of the

modal excitation, GðtÞ, is diagonal then the PODs obtained using the KL expansion will coincide with the
modal expansion (51). Unfortunately this is not generally the case, and the KL theory cannot therefore be
used to obtain the modal functions.

As observed in Ref. [19], another source of perturbation is introduced by the spatial sampling process. Let
xk ¼ kDx for k ¼ 1; . . . ;N with Dx ¼ L=N. The covariance matrix of the discrete response UðtÞ ¼ ðuðt; xkÞÞ is
related to the covariance matrix of the modal components QðtÞ by CU ¼ CCQCT where C is a N � q matrix
with components Gki ¼ ðjiðxkÞÞ.

If CTC ¼ I , then CUC ¼ CCQ and the eigenvectors of CQ are given by the eigenvectors of CU multiplied by
the matrix C. Note that the qualitative errors mentioned in Section 5.1.3 still occur here (if the weight matrix
CTC ¼ I). Unfortunately, in practice we never have CTC ¼ I , and hence the qualitative errors mentioned in
Section 5.1.3 are not valid. We expect the difference between the POMs obtained using KL expansion and the
LNM to increase as N decreases.

In Figs. 5 and 6, the exact first, second, fifth and sixth modal functions of a clamped–free beam are
compared with the associated POMs obtained using the KL expansion of the stationary response and the
transient response with the initial condition CQ0

¼ 0. A localized excitation force F ðx; tÞ ¼ dðx� xf Þf ðtÞ where
f ðtÞ is a scalar random process with covariance function Cf ðtÞ ¼ Eðf ðtþ tÞf T

ðtÞÞ ¼ Sf dðtÞ has been used. The
parameter values are: L ¼ 0:6, EI ¼ 1:4, rS ¼ 0:1620, p ¼ 10, ti ¼ t ¼ 0:01, xf ¼ 0:05 (all the modes were
excited and the correlation coefficient between pairs of modal components were equal to 1), Sf ¼ 1, T ¼ 1
(which correspond to approximately four fundamental periods of the smaller resonance frequency). As was to
be expected, it turned out that the POMs differ from the LNMs. This difference decreases as N increases
(N ¼ 10 in Fig. 5 and N ¼ 40 in Fig. 6). Due to the values of the ratio between successive resonance
frequencies, the difference also decreases as the order of the mode increases. The only differences observed
between the POMs associated with the stationary response and the POMs associated with the transient
response were between the first two modes.

6. Some comments on the nonlinear case

One rather interesting result was the difference between the POMs obtained using the KL expansion of the
response of the nonlinear system and the POMs obtained using the KL expansion of the response of the
equivalent linear system obtained using the method of statistical linearization as described in Ref. [27]. Let us
consider the nonlinear system

_ZðtÞ ¼ GðZðtÞÞ þ FðtÞ (53)

with external random excitation. A suitable equivalent linear system relationship between ZðtÞ and FðtÞ can be
written as follows

_ZðtÞ ¼ LeqZðtÞ þ FðtÞ, (54)
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Fig. 5. Modal functions (solid line) of clamped–free beam and corresponding POMs obtained using KL expansion of the stationary

response (�), and the transient response over ½0;T � (�) with N ¼ 10.
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where the matrix constant Leq is determined by

min
L

EðkGðZðtÞÞ � LZðtÞk2Þ. (55)

For the nonlinear system (53), where there exists a stationary, ergodic probability measure, it can be shown
[27] that the stationary covariance matrix of the nonlinear response (53) is identical to the stationary
covariance matrix of the equivalent linear response (54).



ARTICLE IN PRESS
S. Bellizzi, R. Sampaio / Journal of Sound and Vibration 297 (2006) 774–793 789
Assuming the existence of stationary conditions, the POMs obtained using the KL expansion of the
stationary response of the nonlinear system agree with the POMs obtained using the KL expansion of the
stationary response of the equivalent linear system.

We will now study the case of transient (or non-stationary) responses. Let consider the nonlinear system

M €UðtÞ þ C _UðtÞ þGðUðtÞÞ ¼ FðtÞ; t 2 ½0;T �, (56)

Uð0Þ ¼ U0; _Uð0Þ ¼ _U0. (57)

A suitable equivalent linear system relationship between UðtÞ and FðtÞ can be written as follows:

M €UðtÞ þ C _UðtÞ þ KeqUðtÞ ¼ FðtÞ; t 2 ½0;T �, (58)

where the constant matrix Keq is determined by

min
K

EðkGðUð:ÞÞ � KUð:Þk2Þ (59)

with Eð:Þ ¼ ð1=TÞ
R T

0 Eð:Þdt. This criterion differs from the stationary one (55). It can be used to obtain an
equivalent linear system with a constant matrix. This linearization method differs from that described in Ref.
[28] in the case of non-stationary responses where the equivalent linear system was a time-varying linear
system.

As in Ref. [28], the condition required to obtain optimum can be written as follows:

EðUð:ÞUTð:ÞÞKT
eq ¼ ½EðG1ðUð:ÞÞUð:ÞÞ � � �EðGdðUð:ÞÞ

TUð:ÞÞ�, (60)

where GðUÞ ¼ ðG1ðUÞG2ðUÞ � � �GdðUÞÞ
T.

The question now is: do the POMs obtained using the KL expansion of the nonlinear transient response (56)
agree with the POMs obtained using the KL expansion of the transient response of the equivalent linear
system (58)?

First, the following comment should be made from simulation results. We consider the clamped–free beam
where the free end is fixed to a cubic spring (luðL; tÞ3).

The displacement histories were obtained from excitation histories by solving Eq. (52) (including the
nonlinear term) numerically using the Newmark method. The excitation histories were simulated using the
procedure described in Ref. [26]. The same parameter values as in Section 5.2 were used with the nonlinear
parameter value l ¼ 106 and the time discretization parameter value t ¼ 0:00025 (giving M ¼ 4000 and
recalling that T ¼ 1). R ¼ 1000 realizations were computed. The POMs obtained using the KL expansion of
the transient nonlinear response were computed using the direct method (see Section 4.2.1). The simulated
data were also used to estimate Keq solving Eq. (60) and the POMs obtained using the KL expansion of the
transient response of the equivalent linear system (58) were computed solving the associated Eq. (63) of the
covariance matrix function.

In Figs. 7–10, the first, second, fifth, and sixth modes, respectively, of the underlying linear clamped–free
beam, the corresponding POMs obtained using the KL expansions of the transient responses of the nonlinear
system and those of the equivalent linear system are compared. First of all, we can observe that the POMs
obtained with the two systems (the nonlinear and the equivalent linear system) are very similar. The result
which holds true when we are looking for the stationary responses using the averaging operation (Eð:Þ) seems
to be reasonably true in the case of transient response using the averaging operation (Eð:Þ). Of course, the
proof of this concordance still needs to be established theoretically. As mentioned above, the nonlinear effect
appears to be more significant in the first two modes, and to be less pronounced in the higher-order modes. We
have also plotted, in these figures, several eigenvectors obtained from single realizations of displacement
history. These modes were computed using the direct method described in Section 4.2.1 with the parameter
value R ¼ 1 or, equivalently, with the direct method described in Section 4.1.1 for various displacement
history data. The eigenvectors obviously differ from the POMs as well as from the LNMs. Depending on the
realization, the difference with respect to the POMs can be significant (see for example Fig. 9).
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nonlinear response (�) and the transient response of the equivalent linear system over ½0;T � (�), and that of the nonlinear beam obtained

with several sampled trajectories (�) with N ¼ 40.
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Fig. 8. The second mode (solid line) of a linear clamped–free beam, the corresponding POMs obtained using KL expansion of the

transient nonlinear response (�) and the transient response of the equivalent linear system over ½0;T � (�), and the corresponding POM

modes of the nonlinear beam obtained with several sampled trajectories.
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7. Conclusion

In this present study we show how the KL expansion can be used to obtain a POD of the randomly excited
vibrating system responses in separated variables (time and space) form including transient and stationary
response cases. An averaging operator involving time and ensemble averages has been used to develop the KL
theory. The results obtained with this approach are in line with those obtained using the classical POD method
in the case of deterministic or ergodic random excitation.
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Fig. 9. The fifth mode (solid line) of a linear clamped–free beam, the corresponding POMs obtained using KL expansion of the transient

nonlinear response (�) and the transient response of the equivalent linear system over ½0;T � (�), and the corresponding POM modes of the

nonlinear beam obtained with several sampled trajectories.
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Fig. 10. The sixth mode (solid line) of a linear clamped–free beam, the corresponding POMs obtained using KL expansion of the transient

nonlinear response (�) and the transient response of the equivalent linear system over ½0;T � (�), and the corresponding POM modes of the

nonlinear beam obtained with several sampled trajectories.
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The classical direct and snapshot methods have been extended here to perform the expansion based on
experimental data. The snapshot method seems to be less efficient in the non-ergodic than in the ergodic case.

The POMs are interpreted here in the case of linear and nonlinear vibrating systems subjected to white-noise
excitation in terms of normal modes. As previously mentioned by several authors, a mass condition is
necessary to make the POMs and the LNMs agree. Moreover, in damped linear systems, the POMs and
LNMs agree if the modal matrix diagonalizes both the damping matrix and the covariance excitation matrix.
In the nonlinear case, the POMs are related to the POMs of the equivalent linear system obtained using the
statistical linearization method.
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Appendix A. Derivation of the covariance matrix evolution

Consider the linear d-degrees-of-freedom equation of motion (34) and (35).
Let UðtÞ ¼ ðUTðtÞ; _U

T
ðtÞÞT. Under the assumption that the initial conditions are deterministic (or at least un-

correlated with the excitation), it can be established that the covariance matrix function, CUðtÞ ¼ EððUðtÞ �

mUðtÞÞðUðtÞ �mUðtÞÞ
T
Þ satisfies the following differential equation:

_CUðtÞ ¼ AUCUðtÞ þ CUðtÞA
T
U þ ZðtÞ þ ZTðtÞ; t 2 DT , (61)

CUð0Þ ¼ CU0
, (62)

where CU0
is the covariance matrix of the random vector Uð0Þ ¼ ðUT

0 ;
_U
T

0 Þ
T,

AU ¼
0 I

�M�1K �M�1C

� �
,

ZðtÞ ¼

Z t

0

eAUðt�tÞ
0 0

0 M�1CF ðt; tÞM�1
T

 !
dt,

where CFðt1; t2Þ ¼ EððFðt1Þ �mFðt1ÞÞðFðt2Þ �mFðt2ÞÞ
T
Þ denotes the covariance matrix function of the random

vector process fFðtÞgt2DT
.

In addition, if fFðtÞgt2DT
is a zero-mean white-noise excitation process that is CF ðtÞ ¼ EðFðtþ tÞFTðtÞÞ ¼

SFdðtÞ where SF is a constant symmetric matrix then Eq. (61) reduces to

_CUðtÞ ¼ AUCUðtÞ þ CUðtÞA
T
U þDU; DU ¼

0 0

0 M�1SFM
�1T

 !
. (63)

When A is a stability matrix (this is the case when the matrices M, C and K are symmetric and positive
definite), the matrix function CUðtÞ tends to a symmetrical matrix ĈU which solves the following Lyapunov
equation:

0 ¼ AUĈU þ ĈUA
T
U þDU. (64)

Recalling that the covariance matrix CU ðtÞ of the response UðtÞ is equal to the first block with dimension
n� n of the matrix CUðtÞ, we can now use Eqs. (63) and (64) to analyse the behaviour of the KL
decomposition from transient to stationary responses of system (34) and (35). The transient response is
characterized by the differential equation (63) whereas the stationary response is characterized by the algebraic
equation (64).

To analyse the transient response the averaging operator Eð:Þ has to be used. It can be shown, from Eq. (63),
that the covariance matrix function

CUðTÞ ¼
1

T

Z T

0

CUðtÞdt (65)

satisfies

CUðTÞ ! ĈU when T !1. (66)

Hence, for large T, the KL decomposition based on the averaging operator Eð:Þ coincides with the KL
decomposition based on the stationary response.
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analysis, Computers and Chemical Engineering 20 (5) (1996) 495–506.

[9] J.A. Atwell, B.B. King, Proper orthogonal decomposition for reduced basis feedback controllers for parabolic equations,

Mathematical and Computer Modelling 33 (2001) 1–19.

[10] E. Kreuzer, O. Kust, Analysis of long torsional strings by proper orthogonal decomposition, Archive of Applied Mechanics 67 (1996)

68–80.

[11] A. Steindl, H. Troger, J.V. Zemann, Nonlinear Galerkin methods applied in the dimension reduction of vibrating fluid conveying

tubes, in: M.P. Paidoussis, A.K. Bajaj, T.C. Corke, T.M. Farabee, F. Williams, D.R. Hara (Eds.), ASME Symposium on

Fluid– Structure Interaction, Aeroelasticity, Flow-Induced Vibration and Noise, vol. AD53-1, Dallas, EUA, 1997, pp. 273–280.
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